The Functional Paradigm
0000

LA

AL
COMP316/qi64

Concephs. of Prograrmming Lrgpacgpe
Functional Programming Languages

Thomas Sewell
UNSW
Term 3 2024

MinHS
00000000000

The Functional Paradigm
@000

Functional Programming
Many languages have been called functional over the years:

(define (max-of /Ist)
(cond

Lisp

[(= (length Ist) 1) (first Ist)]
[else (max (first Ist) (max-of (rest Ist)))]))

MinHS
00000000000

The Functional Paradigm

@000

Functional Programming
Many languages have been called functional over the years:

(define (max-of /Ist)
(cond

Lisp

[(= (length Ist) 1) (first Ist)]
[else (max (first Ist) (max-of (rest Ist)))]))

Haskell
maxOf :: [Int] — Int
maxOf = foldrl max

MinHS
00000000000

The Functional Paradigm
@000

Functional Programming
Many languages have been called functional over the years:
Haskell

maxOf :: [Int] — Int
maxOf = foldrl max

Lisp

(define (max-of /Ist)
(cond
[(= (length Ist) 1) (first Ist)]
[else (max (first Ist) (max-of (rest Ist)))]))

JavaScript?
function maxOf(arr) {
var max = arr.reduce(function(a, b) {
return Math.max(a, b);

1}

The Functional Paradigm
@000

Functional Programming
Many languages have been called functional over the years:
Haskell

maxOf :: [Int] — Int
maxOf = foldrl max

Lisp

(define (max-of /Ist)
(cond
[(= (length Ist) 1) (first Ist)]
[else (max (first Ist) (max-of (rest Ist)))]))

JavaScript?
function maxOf(arr) {
var max = arr.reduce(function(a, b) { What do they
return Math.max(a, b); have in common?

1}

MinHS

The Functional Paradigm
00000000000

0e00

Definitions

Unlike imperative languages, functional programming languages
are not very crisply defined.

Attempt at a Definition

A functional programming language is a programming language
derived from or inspired by the A-calculus, or derived from or
inspired by another functional programming language.

The result? If it has A in it, you can call it functional.

The Functional Paradigm
0000

Definitions

Unlike imperative languages, functional programming languages
are not very crisply defined.

Attempt at a Definition

A functional programming language is a programming language
derived from or inspired by the A-calculus, or derived from or
inspired by another functional programming language.

The result? If it has A in it, you can call it functional.

In this course, we'll consider purely functional languages, which
have a much better definition.

The Functional Paradigm MinHS
00e0 00000000000

Why Study FP Languages?

Think of a major innovation in the area of programming languages.

Garbage Collection?

The Functional Paradigm MinHS
00e0 00000000000

Why Study FP Languages?

Think of a major innovation in the area of programming languages.

Garbage Collection?
Lisp, 1958

The Functional Paradigm MinHS
00e0 00000000000

Why Study FP Languages?

Think of a major innovation in the area of programming languages.

Garbage Collection?
Lisp, 1958

Functions as Values?

The Functional Paradigm MinHS
00e0 00000000000

Why Study FP Languages?

Think of a major innovation in the area of programming languages.

Garbage Collection?
Lisp, 1958

Functions as Values?
Lisp, 1958

The Functional Paradigm MinHS
00e0 00000000000

Why Study FP Languages?

Think of a major innovation in the area of programming languages.

Garbage Collection?
Lisp, 1958

Polymorphism?

Functions as Values?
Lisp, 1958

The Functional Paradigm MinHS
00e0 00000000000

Why Study FP Languages?

Think of a major innovation in the area of programming languages.

Garbage Collection?
Lisp, 1958

Polymorphism?
ML, 1973

Functions as Values?
Lisp, 1958

The Functional Paradigm MinHS
00e0 00000000000

Why Study FP Languages?

Think of a major innovation in the area of programming languages.
Type Inference?

Garbage Collection?
Lisp, 1958

Polymorphism?
ML, 1973

Functions as Values?
Lisp, 1958

The Functional Paradigm MinHS
00e0 00000000000

Why Study FP Languages?

Think of a major innovation in the area of programming languages.
Type Inference?
ML, 1973
Garbage Collection?
Lisp, 1958

Polymorphism?
ML, 1973

Functions as Values?
Lisp, 1958

The Functional Paradigm MinHS
00e0 00000000000

Why Study FP Languages?

Think of a major innovation in the area of programming languages.
Type Inference?
ML, 1973
Garbage Collection?
Lisp, 1958
Metaprogramming?

Polymorphism?
ML, 1973

Functions as Values?
Lisp, 1958

The Functional Paradigm MinHS
00e0 00000000000

Why Study FP Languages?

Think of a major innovation in the area of programming languages.
Type Inference?
ML, 1973
Garbage Collection?
Lisp, 1958
Metaprogramming?
Lisp, 1958
Polymorphism?
ML, 1973

Functions as Values?
Lisp, 1958

The Functional Paradigm MinHS
00e0 00000000000

Why Study FP Languages?

Think of a major innovation in the area of programming languages.
Type Inference?
ML, 1973
Garbage Collection?
Lisp, 1958
Metaprogramming?
Lisp, 1958
Polymorphism?
ML, 1973

) Lazy Evaluation?
Functions as Values?

Lisp, 1958

The Functional Paradigm MinHS
00e0 00000000000

Why Study FP Languages?

Think of a major innovation in the area of programming languages.
Type Inference?
ML, 1973
Garbage Collection?
Lisp, 1958
Metaprogramming?
Lisp, 1958
Polymorphism?
ML, 1973

_ . Lazy Evaluation?
Functions as Values® Miranda, 1985

Lisp, 1958

The Functional Paradigm MinHS
00e0 00000000000

Why Study FP Languages?

Think of a major innovation in the area of programming languages.
Type Inference?
Monads?

i ML, 1973

Garbage Collection?
Lisp, 1958
Metaprogramming?
Lisp, 1958
Polymorphism?
ML, 1973

_ . Lazy Evaluation?
Functions as Values® Miranda, 1985

Lisp, 1958

The Functional Paradigm MinHS
00e0 00000000000

Why Study FP Languages?

Think of a major innovation in the area of programming languages.
Type Inference?

Monads?
onads ML, 1973

Haskell, 1991
aske Garbage Collection?

Lisp, 1958
Metaprogramming?
Lisp, 1958
Polymorphism?
ML, 1973

_ . Lazy Evaluation?
Functions as Values® Miranda, 1985

Lisp, 1958

The Functional Paradigm MinHS
00e0 00000000000

Why Study FP Languages?

Think of a major innovation in the area of programming languages.
Type Inference?

Monads?
onacs ML, 1973

Haskell, 1991 .
Garbage Collection?

Software Transactional Memory? Lisp, 1958

Metaprogramming?
Lisp, 1958
Polymorphism?
ML, 1973

_ . Lazy Evaluation?
Functions as Values® Miranda, 1985

Lisp, 1958

The Functional Paradigm MinHS

[e]e] o] 00000000000

Why Study FP Languages?

Think of a major innovation in the area of programming languages.
Type Inference?

Monads?
onads ML, 1973

Haskell, 1991
aske Garbage Collection?

Software Transactional Memory? Lisp, 1958

no?
GHC Haskell, 2005 Metaprogramming

Lisp, 1958
Polymorphism?
ML, 1973

_ . Lazy Evaluation?
Functions as Values® Miranda, 1985

Lisp, 1958

The Functional Paradigm MinHS
ocooe 00000000000

Purely Functional Programming Languages
The term purely functional has a very crisp definition.
Definition
A programming language is purely functional if S-reduction (or
evaluation in general) is actually a confluence.
In other words, functions have to be mathematical functions, and
free of side effects.

The Functional Paradigm
feelel)

Purely Functional Programming Languages

The term purely functional has a very crisp definition.
Definition

A programming language is purely functional if S-reduction (or
evaluation in general) is actually a confluence.

In other words, functions have to be mathematical functions, and
free of side effects.

Consider what would happen if we allowed effects in a functional
language:

count = 0;
f x = {count := count + x; return count};
m=(\y.y+y) (f3)

If we evaluate f 3 first, we will get m = 6, but if we S-reduce m
first, we will get m = 9. = not confluent.

The Functional Paradigm MinHS
0000 00000000000

Making a Functional Language

We're going to make a language called MinHS.

@ Three types of values: integers, booleans, and functions.

The Functional Paradigm MinHS
0000 00000000000

Making a Functional Language

We're going to make a language called MinHS.
@ Three types of values: integers, booleans, and functions.

@ Static type checking (not inference)

The Functional Paradigm
0000

Making a Functional Language

We're going to make a language called MinHS.

@ Three types of values: integers, booleans, and functions.

@ Static type checking (not inference)
© Purely functional (no effects)

MinHS
©0000000000

The Functional Paradigm
0000

Making a Functional Language

We're going to make a language called MinHS.

@ Three types of values: integers, booleans, and functions.

@ Static type checking (not inference)
© Purely functional (no effects)
© Call-by-value (strict evaluation)

MinHS
©0000000000

The Functional Paradigm
0000

Making a Functional Language

We're going to make a language called MinHS.

@ Three types of values: integers, booleans, and functions.

@ Static type checking (not inference)
© Purely functional (no effects)
© Call-by-value (strict evaluation)

Something not unlike this will appear in your Assignment 1.

MinHS
©0000000000

The Functional Paradigm

0000

Integers
Identifiers
Literals

Types

Infix Operators
Expressions

® @ N T A3

Syntax

True | False
Bool | Int | 71 — 7
* | + | ==

= x|n|b|(e)| e1®e

| if e; then e else e3

MinHS
0®000000000

The Functional Paradigm

0000

Integers
Identifiers
Literals

Types

Infix Operators
Expressions

® @ N T A3

Syntax

True | False

Bool | Int | 71 — 7

* | + | ==
x[nlb|(e)|e®e
if e; then e else e3
€1 €

MinHS
0®000000000

The Functional Paradigm

0000

Integers
Identifiers
Literals

Types

Infix Operators
Expressions

® @ N T A3

Syntax

True | False

Bool | Int | 71 — 7

* |+ | ==

= x|n|b|(e)| e1®e
| if e; then e else e3
|

|

€1 e
recfun f 1 (1] >) x=e
1 Like A, but with recursion.

As usual, this is ambiguous concrete syntax. But all the
precedence and associativity rules apply as in Haskell. We assume

a suitable parser.

MinHS
0®000000000

The Functional Paradigm MinHS
0000 00000000000

Examples

Example (Stupid division by 5)

recfun divBy5 :: (Int — Int) x =
if x<5
then 0
else 1 + divBy5 (x — 5)

Example (Average Function)

recfun average :: (Int — (Int — Int)) x =
recfun avX :: (Int — Int) y =

(x+y)/2
As in Haskell, (average 15 5) = ((average 15) 5).

The Functional Paradigm MinHS
0000 000@0000000

We don’t need no let

This language is so minimal, it doesn’t even need let expressions.
How can we do without them?

The Functional Paradigm MinHS
0000 000@0000000

We don’t need no let

This language is so minimal, it doesn’t even need let expressions.
How can we do without them?

letx:mp=eine:m = (recfunf:(m - n)x=e)e

The Functional Paradigm
0000

Abstract Syntax

Moving to first order abstract syntax, we get:

Concrete Syntax ‘ Abstract Syntax

n (Num n)
b (Lit n)

MinHS
00000000000

The Functional Paradigm
0000

Abstract Syntax

Moving to first order abstract syntax, we get:

Concrete Syntax ‘ Abstract Syntax
n (Num n)
b (Lit n)

if c then t else e (If cte)

MinHS
00000000000

The Functional Paradigm MinHS
0000 0000e000000

Abstract Syntax

Moving to first order abstract syntax, we get:

Concrete Syntax ‘ Abstract Syntax
n (Num n)
b Lit n)

(
if c then t else e (If cte)
er & (Apply e)

unctional Paradigm

Abstract Syntax

Moving to first order abstract syntax, we get:

Concrete Syntax

Abstract Syntax

n
b

if c then t else e
€1 €

recfun f :: (11 — 7)) x =

(

(Lit n)
(If cte)
(Apply er)
(Recfun 7 7 f x e)

MinHS
00000000000

unctional Paradigm

Abstract Syntax

Moving to first order abstract syntax, we get:

Concrete Syntax

Abstract Syntax

n

b

if c then t else e

€1 €

recfun f i (m = 1) x=e
X

(
(
(
(
(
(

Num n)

Lit n)

If cte)

Apply e e)
Recfun 71 73 f x €)
Var x)

MinHS
00000000000

The Functional Paradigm

Abstract Syntax

Moving to first order abstract syntax, we get:

Concrete Syntax

Abstract Syntax

n
b

if c then t else e
€1 €
recfun f :
X

(7’1—>T2)X:

(

(Lit n)
(If cte)
(Apply e e2)
(Recfun 7 7 f x e)
(Var x)

What changes when we move to higher order abstract syntax?

MinHS
00000000000

The Functional Paradigm MinHS
0000 0000e000000

Abstract Syntax

Moving to first order abstract syntax, we get:

Concrete Syntax Abstract Syntax

n (Num n)

b (Lit n)

if c then t else e (If cte)

el e (Apply e1 e2)
recfun f :: (11 >) x=e | (Recfun 73 7» f x e€)
X (Var x)

What changes when we move to higher order abstract syntax?
© Var terms go away — we use the meta-language’s variables.

@ (Recfun 71 7» f x €) now uses meta-language abstraction:
(Recfun 71 7 (f. x. €)).

The Functional Paradigm MinHS

0000

00000@00000

Working Statically with HOAS

To Code

We're going to write code for an AST and pretty-printer for MinHS
with HOAS.

Seeing as this requires us to look under abstractions without
evaluating the term, we have to extend the AST with special “tag”
values.

4

The Functional Paradigm MinHS
0000 00000080000

Static Semantics
To check if a MinHS program is well-formed, we need to check:
© Scoping — all variables used must be well defined
© Typing — all operations must be used on compatible types.

MinHS
00000080000

Static Semantics
To check if a MinHS program is well-formed, we need to check:
@ Scoping — all variables used must be well defined
© Typing — all operations must be used on compatible types.

Our judgement is an extension of the scoping rules to include types:

Under this context of assumptions‘

*rl—e:Te\

’The expression is assigned this type

The context I includes typing assumptions for the variables:

x :Int,y : Int F (Plus x y) : Int

The Functional Paradigm
0000

Static Semantics

N (Num n) :Int T+ (Lit b) : Bool
e :Int e :Int
' (Plus e &) : Int

ME(If e1 e &3):

MinHS
00000008000

The Functional Paradigm
0000

Static Semantics

N (Num n) :Int T+ (Lit b) : Bool
e :Int e :Int
' (Plus e &) : Int

ME(If e1 e 3):

MinHS
00000008000

The Functional Paradigm
0000

Static Semantics

N (Num n) :Int T+ (Lit b) : Bool
e :Int e :Int
[t (Plus e; e) : Int
[+ e; : Bool

ME(If e1 e &3):

MinHS
00000008000

The Functional Paradigm MinHS
0000 0000000e000

Static Semantics

N (Num n) :Int T+ (Lit b) : Bool
e :Int e :Int
' (Plus e &) : Int
I e : Bool e T lFe3:T
FE(If e1 e e3): 7

The Functional Paradigm
0000

Static Semantics

N (Num n) :Int T+ (Lit b) : Bool
e :Int e :Int
' (Plus e &) : Int
I e : Bool e T lFe3:T

FE(If e1 e e3): 7

(x:71)erl
M= (Var x) : 7

MinHS
00000008000

The Functional Paradigm
0000

Static Semantics

N (Num n) :Int T+ (Lit b) : Bool
e :Int e :Int

' (Plus e &) : Int

I e : Bool e T lFe3:T

(x:1)er

FE(If e1 e e3): 7

r, Fe:m

M= (Var x) : 7

[+ (Recfun 7 7 (f. x. €)) :

MinHS
00000008000

The Functional Paradigm
0000

Static Semantics

N (Num n) :Int T+ (Lit b) : Bool
e :Int e :Int

' (Plus e &) : Int

I e : Bool e T lFe3:T

(x:1)er

FE(If e1 e e3): 7

I,x:m, Fe:m

M= (Var x) : 7

[+ (Recfun 7 7 (f. x. €)) :

MinHS
00000008000

The Functional Paradigm
0000

Static Semantics

N (Num n) :Int T+ (Lit b) : Bool
e :Int e :Int

' (Plus e &) : Int

I e : Bool e T lFe3:T

(x:1)er

FE(If e1 e e3): 7

Mx:m,f:(n—mn)kFe:n

M= (Var x) : 7

[+ (Recfun 7 7 (f. x. €)) :

MinHS
00000008000

he Functional Paradigm MinHS
0000 0000000e000

Static Semantics

N (Num n) :Int T+ (Lit b) : Bool
e :Int e :Int
' (Plus e &) : Int
I e : Bool e T lFe3:T
FE(If e1 e e3): 7

(x:1)er Mx:m,f:(n—mn)kFe:n

N=(Var x): 7 Tk (Recfun 7 7 (f. x. €)): 71 — T2

I+ (Apply €1) :

he Functional Paradigm MinHS
0000 0000000e000

Static Semantics

N (Num n) :Int T+ (Lit b) : Bool
e :Int e :Int
' (Plus e &) : Int
I e : Bool e T lFe3:T
FE(If e1 e e3): 7

(x:1)er Mx:m,f:(n—mn)kFe:n

N=(Var x): 7 Tk (Recfun 7 7 (f. x. €)): 71 — T2
[Fer:mm—m
I+ (Apply €1) :

he Functional Paradigm MinHS
0000 0000000e000

Static Semantics

N (Num n) :Int T+ (Lit b) : Bool
e :Int e :Int
' (Plus e &) : Int
I e : Bool e T lFe3:T
FE(If e1 e e3): 7

(x:1)er Mx:m,f:(n—mn)kFe:n

N=(Var x): 7 Tk (Recfun 7 7 (f. x. €)): 71 — T2
FFe1:71—>72 rFegiTl
I+ (Apply €1) :

he Functional Paradigm MinHS
0000 0000000e000

Static Semantics

N (Num n) :Int T+ (Lit b) : Bool
e :Int e :Int
' (Plus e &) : Int
I e : Bool e T lFe3:T
FE(If e1 e e3): 7

(x:1)er Mx:m,f:(n—mn)kFe:n

N=(Var x): 7 Tk (Recfun 7 7 (f. x. €)): 71 — T2
FFe1:71—>72 rFegiTl
I (Apply €1 &) : 7

he Functional Paradigm MinHS
0000 0000000e000

Static Semantics

N (Num n) :Int T+ (Lit b) : Bool
e :Int e :Int
' (Plus e &) : Int
I e : Bool e T lFe3:T
FE(If e1 e e3): 7

(x:1)er Mx:m,f:(n—mn)kFe:n

N=(Var x): 7 Tk (Recfun 7 7 (f. x. €)): 71 — T2
FFe1:71—>72 rFegiTl
I (Apply €1 &) : 7

Let's implement a type checker.

The Functional Paradigm MinHS
0000 00000000800

Dynamic Semantics

Structural Operational Semantics (Small-Step)

Initial states:

The Functional Paradigm MinHS
0000 00000000800

Dynamic Semantics

Structural Operational Semantics (Small-Step)

Initial states: All well typed expressions.
Final states:

The Functional Paradigm MinHS
0000 0000000000

Dynamic Semantics

Structural Operational Semantics (Small-Step)

Initial states: All well typed expressions.
Final states: (Num n), (Lit b),

The Functional Paradigm MinHS
0000 00000000800

Dynamic Semantics

Structural Operational Semantics (Small-Step)

Initial states: All well typed expressions.
Final states: (Num n), (Lit b), Recfun too!

Evaluation of built-in operations:

el'—>e{

(Plus e &)~ (Plus €] &)

(and so on as per arithmetic expressions)

The Functional Paradigm
0000

Specifying If

e1— €]

(If e1 e e3) — (If €] e €3)

(If (Lit True) e €3) — &

(If (Li‘t False) e e3) — e3

MinHS
00000000080

MinHS

The Functional Paradigm
0000 0000000000 e

How about Functions?
Recall that Recfun is a final state — we don't need to evaluate it
unless it's applied to an argument.
Evaluating function application requires us to:
@ Evaluate the left expression to get a Recfun;
© evaluate the right expression to get an argument value; and

© evaluate the function’s body, after supplying substitutions for
the abstracted variables.

e €
(Apply €1) — (Apply € &)
e > €
(Apply (Recfun...) &)+ (Apply (Recfun...) €})

MinHS

The Functional Paradigm
0000 0000000000 e

How about Functions?
Recall that Recfun is a final state — we don't need to evaluate it
unless it's applied to an argument.
Evaluating function application requires us to:
@ Evaluate the left expression to get a Recfun;
© evaluate the right expression to get an argument value; and

© evaluate the function’s body, after supplying substitutions for
the abstracted variables.

e €
(Apply €1) — (Apply € &)
e > €
(Apply (Recfun...) &)+ (Apply (Recfun...) €})
veF

(Apply (Recfun 71 7 (f.x. €)) v) — e[x := v,f := (Recfun 13 7 (f.x. €))]

	The Functional Paradigm
	

	MinHS
	

